Difficult Sibling, Easy Sibling: Temperament and the Within-Family Environment

Frances Fuchs Schachter and Richard K. Stone
New York Medical College and Metropolitan Hospital Center

For theory and practice in primary prevention, it makes a big difference whether the family environment is viewed as active or merely reactive in producing what Thomas and Chess (1977) call the Difficult Child, the child with a difficult temperament. It is these children who seem vulnerable to psychopathology (Carey, 1973, 1974; Carey, Fox, & McDevitt, 1977; Graham, Rutter, & George, 1973; Thomas, Chess, & Birch, 1968). Thomas and Chess (1977) view difficult temperament as evident from early infancy with an appreciable genetic component, and they assign the family environment the reactive role of neutralizing or exacerbating this pattern depending on its “goodness of fit.” On this basis, parents are advised to accept the child’s early definition as difficult and to adapt as best they can. By contrast, if we were to find evidence suggesting that specific environmental processes may lead to the early definition of a child as difficult, we might want to consider advising parents to redefine the child as easy, or as neither easy nor difficult but some happy combination of the two.

What role then to assign to the family environment? Considerable confusion arises from the developmentalists’ traditional neglect of the nonshared within-family environment, that is, the environment that children in the same family do not share in common. Recently, behavioral geneticists (Rowe & Plomin, 1981; Scarr & Grajek, 1982) have pointed out that developmental researchers have underestimated the differences between siblings and neglected the nonshared within-family environmental influences that might account for these differences. Instead, studies of environmental influences have focused almost exclusively on such variables as social class, child-rearing practices, maternal employment, or father absence, generally shared by all children in the family. Such variables constitute the shared, between-family environment, which can account for sibling similarities but not for their differences. It is perhaps this research tradition that leads to considering genetic causal attributions rather than environmental ones in accounting for sibling differences. For example, Chess and Thomas (1983) tell us that their seminal work on temperament was inspired by the evident differences in their own children.

Based on twin and adoption studies, Rowe and Plomin (1981) conclude that it is in the realm of personality and psychopathology that the nonshared within-family environment plays an especially important role as a source of sibling differences; in the realm of cognition, nonshared genes appear to play a larger role. They urge a shift in methodology from the study of one child in a family at a time, as in the investigation of between-family processes, to the study of all the children in the family, so as to illuminate within-

The authors would like to thank Drs. Ralph Candella and Clifford Rothman, New York Medical College, for access to their pediatric patients. Requests for reprints should be sent to Frances Fuchs Schachter, who is now in the Pediatric Psychology Section of the Pediatrics Department, New York Medical College, Metropolitan Hospital Center, 1901 First Avenue, New York, NY 10029.

[Child Development, 1985, 56, 1335–1344. © 1985 by the Society for Research in Child Development, Inc. All rights reserved. 0009-3920/85/5605-0018$01.00]
family processes in personality development. In the present study, the latter design is adopted to examine one such within-family process, sibling deidentification or contrast, in order to evaluate whether there is sufficient evidence to infer that it may influence the early definition of a child as difficult in temperament.

Schachter's (1982) concept of sibling deidentification refers to the tendency of family members to define siblings as different or contrasting. Large-sample studies of two- and three-child families based on generalized alike-different judgments of mothers and of the siblings themselves have demonstrated a consistent pattern (Schachter, 1982; Schachter, Gilutz, Shore, & Adler, 1978; Schachter, Shore, Feldman-Rotman, Marquis, & Campbell, 1976), namely, that sibling deidentification occurs mainly in the first pair of children in the family, including this first-second sibling pair in two-child families, least often in first-third sibling pairs, and at intermediate levels in second-third sibling pairs. In addition, in the event of significant differences within these pairs, same-sex siblings show more deidentification than do opposite-sex ones.

This consistent pattern of occurrence—also found in large-sample studies of contrasting parental identification, that is, one sibling identified with father, the other with mother (Schachter, 1982)—raises a variety of questions. Why does this pattern recur? It seems that deidentification is highest where sibling rivalry or competition and comparison is likely to be most intense, namely, in first-second pairs and in same-sex pairs. Does deidentification involve every member of the nuclear or extended family? We do not know. So far, only mothers and the siblings themselves have been asked for their views. Are the siblings' perceptions of contrast based on prior perceptions of their mothers, is the opposite the case, or do family members arrive at these views independently? Again, we do not yet know. All of these issues are interesting (and some are discussed elsewhere, e.g., Schachter, 1982; Schachter et al., 1976, 1978), but they are tangential to the present study.

In this instance, we focus on sibling deidentification as an exemplar of a within-family environmental process and on mothers' ratings as exemplars of the perceptions of family members. Whatever the ultimate explanation for generalized sibling deidentification, its consistent pattern of occurrence makes it possible to test whether mothers' ratings of their children's temperaments follow this same pattern. If so, one might plausibly infer that sibling deidentification has some influence on mothers' definitions of their children's temperaments.

Sibling deidentification seems like an apt illustration of a within-family process, not only because behavioral geneticists have so classified it (Rowe & Plomin, 1981; Scarr & Grajek, 1982) but also because it is concerned with perceptions of sibling differences. Mothers are appropriate representatives of the family members in a study of temperament because almost all current research on temperament is based on mothers' perceptions (e.g., Carey & McDevitt, 1978a; Chess & Thomas, 1983). Based on the previously obtained results, we tested the following predictions concerning mothers' temperament ratings of their children: (1) that contrast in mothers' easy versus their difficult ratings would occur mainly in first-second sibling pairs, least in first-third pairs, and at intermediate levels in second-third pairs, and (2) that, in the event of significant differences within sibling pairs, deidentification would favor same-sex siblings as compared to opposite-sex ones.

Methods

Subjects.—With their youngest child 1—7 years old (mean age = 3.0), two samples of mothers were randomly selected: (1) an inner-city sample of 93 mothers, 62 with two children and 31 with three, recruited in the waiting rooms of the pediatric clinic at a large New York City hospital, and (2) a white middle-class sample of 111 mothers, 80 with two children and 31 with three, recruited in ethnic communities at the city border and in neighboring suburbs, where three-child families are not uncommon, at locations where young mothers tend to congregate, including pediatricians' offices and playgrounds. Mothers were excluded if their children had different fathers or different homes and/or if children were twins, or if they had perinatal complications or physical handicaps. For the middle-class sample, families that had experienced divorce or separation were also excluded; too few of the inner-city sample were married to add this criterion to it. There were 217 inner-city children and 253 middle-class children in all.

To compare two- and three-child family pairs, matching is required. The inner-city sample was homogeneous in social class, being lower or working class, and in ethnicity, with rare exception, being Hispanic. In addi-
tion, two- and three-child-family pairs were matched in age of youngest child. The white, middle-class sample was homogeneous in social class, and two- and three-child-family pairs were matched in ethnicity—61.3 being Irish, Italian, or both; 20.0% Jewish; the rest Other—and in age of youngest child.

The inner-city sample was studied because it was available at our host institution; it also afforded extension of previous research based largely on middle-class samples (Hubert, Wachs, Peter-Martin, & Gandour, 1982). The 1–7-year range was chosen because much of the research on temperament covers this or a younger range (Hubert et al., 1982). The first year of life was excluded because preliminary testing showed that some mothers deferred judgment on the temperament of their youngest child during this early period. None deferred after 1 year. For the inner-city sample, mean age for firstborns in two-child families was 6.7 years (range = 2–18); for firstborns in three-child families, 9.6 years (5–18); for second-borns, 6.4 years (2–12). Comparable ages for middle-class children were 6.2 (2–13), 9.3 (5–17), and 6.4 (2–15).

Procedure.—For both samples, a brief interview elicited global maternal impressions of each child's temperament as easy, difficult, or half-and-half, generating a seven-point bipolar scale. For the middle-class sample, instructions were: "Some children have easy temperaments, some children have difficult temperaments, and some are half-and-half. With your children, your first, second (and third), describe them as they are now. Is the first one easy, difficult, or half-and-half... the second... (and third)." If easy or difficult was the answer, the mother was asked how much—"a little, middling, or a lot"—with extremely easy assigned one point and extremely difficult seven points. Half-point ratings were requested in a few cases and permitted.

For the inner-city sample, the phrasing "difficult (or easy) to manage," borrowed from Hegvik, McDevitt, and Carey (1982), was substituted for the "temperament" phrasing, since some mothers did not understand the latter. Spanish was used when needed. To focus on current functioning, mothers who lapsed into past tense were redirected to the present. This sample, because of its availability at the host institution, was also recruited to assess test-retest reliability. The correlation for 25 children after a mean interval of 25.5 days was .71, similar to reported reliabilities for difficultness indices derived from maternal temperament questionnaires (e.g., Bates, Freeland, & Lounsbury, 1979; .70, with 30-day time interval).

Additionally, this sample was asked "how" the child was easy or difficult, as recommended by Bates (1980), to elucidate what these terms signify to mothers. Responses were compared to the dimensions of the Difficult Child cluster of Thomas and Chess (1977). Of their five cluster dimensions, three were often cited by mothers—adaptability, mood, and intensity—and one often cited, activity, was not found in the cluster, although Carey and McDevitt (1978b) find it to be associated with the cluster. Classification of free responses into dimensional categories was based on behavioral items of temperament questionnaires (e.g., "He never listens" was classified as representing low adaptability because its opposite, "Can be coaxed out of forbidden activity," was classified as representing high adaptability on the questionnaire of Hegvik et al., 1982). Results are consistent with Hegvik et al.'s finding that adaptability, mood, and intensity—being .62, .62, and .44, respectively—correlated highest with maternal global impressions, from which they conclude that any revised Difficult Child cluster is likely to include these dimensions.

In a number of studies, global maternal impressions of easy or difficult have been found to correlate with scores based on maternal temperament questionnaires containing specific behavioral items, the latter intended to enhance objectivity (Carey & McDevitt, 1978a; Hegvik et al., 1982; McDevitt & Carey, 1978). McDevitt and Carey (1981) claim that the latter yield more stable measures. On the other hand, Bates (1980) claims better predictive validity for the more subjective, global maternal impression since mothers are likely to act on their definition of their children. Stability has been a general problem in temperament theory and research. In practice, eliciting global impressions is so economical that stability can be enhanced by repeated ratings on repeated contact—for example, successive pediatric visits. In any case, temperament questionnaires are not practical in studying multiple children per family, since each takes about 30 min (e.g., Carey & McDevitt, 1978a). And mothers willing to spend the time for three children would probably constitute a biased sample. Perhaps the last word on this issue is Burisch's (1984) "law of simplicity," based on his summary of the accumulated evidence that "in many, if not most, situations, ques-
Observations scales should indeed be replaced by self-rating scales" (p. 225).

Results

Comparisons among the pairs.—Table 1 shows the correlations for temperament rat-
ings for all groups of sibling pairs in both samples, and Table 2 shows the mean absolute difference in ratings of siblings in each group of pairs. It can be seen that the prediction that sibling deidentification would occur mainly in first-second pairs received support from both indices of sibling contrast. Table 1 shows significant negative correlations in sibling temperament for three of the four groups of first-second pairs (−0.35, −0.37, and −0.22), but for none of the other groups of pairs; one of the latter even shows a significant positive correlation (0.41). Moreover, Table 2 shows the highest sibling differences for these same three groups of first-second pairs. These groups include both the two- and three-child-family first-second pairs of the middle-class sample and the two-child-family first-second pairs of the inner-city sample.

Table footnotes show that the amount of sibling contrast for these groups of first-
second pairs was significantly higher than that for the other groups of pairs in their respec-
tive samples as follows (.05 level, one-tail test):^ The inner-city two-child family group of first-second pairs shows significantly more

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>EASY-DIFFICULT TEMPERAMENT CORRELATIONS FOR SIBLING PAIRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUPS OF PAIRS</td>
<td>MIDDLE CLASS</td>
</tr>
<tr>
<td></td>
<td>CORRELATION</td>
</tr>
<tr>
<td>Two-child first-second pairs</td>
<td>−.35**</td>
</tr>
<tr>
<td>Same-sex</td>
<td>−.41*</td>
</tr>
<tr>
<td>Opposite-sex</td>
<td>−.30*</td>
</tr>
<tr>
<td>Three-child pairs</td>
<td></td>
</tr>
<tr>
<td>First-second</td>
<td>−.47**</td>
</tr>
<tr>
<td>Second-third</td>
<td>.02</td>
</tr>
<tr>
<td>First-third</td>
<td>−.09</td>
</tr>
</tbody>
</table>

* Significant negative correlation, .05 level or beyond (one-tail test).
* Significant greater sibling contrast for first-second vs. second-third pair, <.05 level (one-tail test).
* Significantly greater sibling contrast for first-second vs. first-third pair, <.05 level (one-tail test).

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>MEAN SIBLING DIFFERENCE (Absolute) FOR SIBLING PAIRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUPS OF PAIRS</td>
<td>MIDDLE CLASS</td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
</tr>
<tr>
<td>Two-child first-second pairs</td>
<td>2.26</td>
</tr>
<tr>
<td>Same-sex</td>
<td>2.19</td>
</tr>
<tr>
<td>Opposite-sex</td>
<td>2.32</td>
</tr>
<tr>
<td>Three-child pairs</td>
<td></td>
</tr>
<tr>
<td>First-second</td>
<td>2.42*</td>
</tr>
<tr>
<td>Second-third</td>
<td>1.85</td>
</tr>
<tr>
<td>First-third</td>
<td>1.79</td>
</tr>
</tbody>
</table>

* Significantly greater sibling contrast for first-second vs. first-third pair, <.05 level (one-tail test).

1 Pairs were compared only with other pairs in their own social class using z transformations comparing the correlations of two- and three-child-family pairs, t tests for independent means comparing the mean sibling-difference of two- and three-child-family pairs, and t tests for correlated correlations (McNemar, 1962) or correlated means comparing three-child-family pairs.
contrast than its sample group of first-third pairs for both correlations and sibling differences. For middle-class correlations, both two- and three-child-family groups of first-second pairs show significantly more contrast than does the group of second-third pairs. For middle-class sibling differences, the three-child-family group of first-second pairs shows significantly more contrast than does the group of first-third pairs.

It can be seen that all but one of the four groups of first-second pairs, in addition to showing significant negative correlations in sibling temperament, also showed significantly greater contrast when compared to one or both of the other groups of pairs in their sample. Moreover, disparities in results between the two indices of sibling contrast were not themselves significant; when only one of the two measures showed a significant difference, the other measure showed a difference approaching significance. Perhaps the most impressive example of this lack of significant disparity between measures is shown in the difference between the middle-class three-child-family group of first-second pairs and first-third pairs, which was significant at the .05 level for the sibling-difference measure and at the .055 level for correlations. It should also be noted that the standard error of the difference between independent correlations is wholly dependent on the size of the samples (see formula in McNemar, 1962), so that a substantial difference in correlation—for example, as between −.35 for the middle-class two-child-family’s group of first-second pairs and −.09 for its group of first-third pairs—can fall short of significance if the sample is not large enough (the p value obtained was .11, one-tail test). Finally, we call attention to a surprising finding to be discussed below, namely, that the three significant negative correlations obtained for the groups of first-second pairs differ significantly from the low positive, average correlations—ranging from .12 to .20 (Rowe & Plomin, 1981, and Scarr & Grajek, 1982)—previously reported for sibling personality, and that none of the other groups of pairs so differ.

The results also provide some support for the prediction that deidentification is least common in first-third pairs. Both samples show the lowest mean sibling-difference for groups of first-third pairs (see Table 2), the inner-city correlations (see Table 1) show contrast to be least common in this pair (the correlation is significantly positive), and, although the middle-class correlations show deidentification to be less common in the group of second-third pairs than in first-third pairs, the difference between them is not significant. It is this lack of significant difference between second-third and first-third pairs in previous research, all on middle-class families (Schachter, 1982; Schachter et al., 1976, 1978), plus the consistently significant greater contrast for first-second pairs, compared to other pairs, that prompted the formulation that sibling deidentification is a phenomenon that occurs mainly in first-second pairs.

In the present study, the significance of social-class differences in interpair comparisons could be tested using 2 × 2 ANOVAs, social class × pair, based on the sibling-difference index. None of the F ratios testing either social-class effects or interaction effects reached significance. For two-child-family groups of first-second pairs compared to groups of second-third pairs, F(1,200) = .46 for social class and F(1,200) = .15 for interaction effects; and relative to groups of first-third pairs, comparable ratios were F(1,200) = .16 and F(1,200) = .48. For three-child families (with repeated measures for pairs), comparable ratios were F(1,60) = .47 for social class and F(2,120) = 1.74 for interaction effects.

It adds meaning to the correlations and sibling differences of Tables 1 and 2 to consider the actual ratings for sibling pairs. Of interest is the percentage of pairs with the mother rating one sibling as easy (1—3) and the other as difficult (5—7). This percentage is limited by the overall incidence of difficult children, estimated to be 10% by Chess and Thomas (1983), and also by the number of such children rated as difficult by their mothers. The latter is subject to social-desirability sets, since some mothers may be reluctant to label their children as difficult. Given this reluctance, free-choice methodology tends to underestimate the number of difficult children, whereas forced choice (as in Hegvik et al., 1982) tends to overestimate it. In the present study, free choice was used, allowing mothers to rate their children as neither easy nor difficult but as half-and-half, so that the percentage of pairs showing the easy-difficult split is probably an underestimate.

Evidence that the easy-difficult split is underestimated derives from the discovery of a strategy we call damning with faint praise, with mother rating one child as extremely easy (1) while rating the other as merely neutral (4), all the while winking, smiling, rolling her eyes, or actually changing the latter rating from 5—7 to 4, thus signalling that she might
have rated the latter child as difficult were it socially acceptable to do so. Some of these mothers spoke openly about their reluctance to use the word “difficult.” Pair ratings of 1/4 or 4/1 were significantly more common among middle-class than among inner-city families (16.2% vs. 3.9%, respectively; $\chi^2(1) = 13.34, p = <.01$), whereas children rated as difficult were somewhat more common among inner-city families. Note that these disparate strategies did not generate significant social-class differences in interpair comparison (see ANOVAs), probably because the difference between 1 and 4 equals that between 2 and 5 or between 3 and 6, although it is only the latter two that overtly demonstrate the easy-difficult split.

The percentage of the present sample rating any child as difficult was 16.2 for middle-class and 24.4 for inner-city mothers (no significant difference for the trichotomy easy, difficult, and half-and-half). In view of the free-choice methodology, it is interesting to examine those pairs with mothers rating one sibling as difficult to see how they chose to rate the other sibling. For middle-class first-second pairs, the percentages for the other siblings’ ratings were 77.8 easy, 18.5 half-and-half, and 3.7 difficult among two-child families; 100 easy, among three-child families; and for all other sample pairs 58.8 easy, 35.3 half-and-half, and 5.9 difficult. For inner-city first-second pairs, comparable percentages were 71.9, 18.8, and 9.4 among two-child families; 60.0, 40.0, and 0 among three-child families; and 52.2, 39.1, and 8.7 for all other sample pairs. It can be seen that for the three groups of first-second pairs showing significant negative correlations, and not for the other groups of pairs, the overwhelming choice for the other sibling was the rating easy rather than the neutral half-and-half. (Rating both siblings in a pair as difficult was rare.)

On this basis, the percentage of pairs showing the easy-difficult split for the middle-class sample was 26.2 for two-child-family pairs, and 29.0, 16.1, and 16.1 for groups of first-second, second-third, and first-third pairs of three-child families, respectively. Comparable percentages for inner-city pairs were 37.1, 19.4, 25.8, and 12.9. These percentages could account for substantial numbers of the 10% of children estimated to be difficult by Chess and Thomas, even without taking account of the mothers’ reluctance to label their children as difficult.

Comparison within the pairs.—For two-child-family pairs in both samples, Tables 1 and 2 also compare sibling contrast in same- and opposite-sex siblings. Such within-pair comparison was not undertaken for three-child-family pairs because the relevant subgroups were too small. For these two-child-family pairs, the following prediction was tested: in the event of significant differences between same- and opposite-sex siblings, deidentification will favor the former.

Note that the prediction is so worded that, whereas a significantly greater contrast for same-sex siblings supports the model, lack of significance does not invalidate the model. This wording is based on the following rational and empirical considerations: significantly greater contrast for same-sex siblings is a paradox, since the weight of genetic and cultural factors, including sexual stereotypes, might lead one to expect significantly more contrast for opposite-sex siblings. Thus, a lack of significant difference between same- and opposite-sex siblings could mean that deidentification had managed to negate the expected greater contrast for opposite-sex pairs without going so far as to completely reverse it. Previous research on generalized deidentification suggests that the paradoxical, significantly greater contrast for same-sex siblings occurs in about one in four within-pair analyses; two of eight analyses showed this effect, whereas none showed significantly more contrast for opposite-sex siblings. Similarly, research on contrasting parental identification—that is, one sibling identified with mother the other with father—(where sexual stereotypes are more apt to be evoked) showed significantly more contrast for same-sex siblings in two of 16 analyses, with none showing significantly more contrast for opposite-sex siblings (Schachter, 1982; Schachter et al., 1976, 1978).

The present study provides limited opportunity to demonstrate the paradoxical, significantly greater contrast for same-sex siblings, since only the two groups of two-child-family pairs were available for this within-pair comparison. The results show that neither middle-class nor inner-city two-child families showed significantly more contrast for opposite-sex siblings. On the other hand, the inner-city group showed a difference in favor of same-sex siblings that approached significance for correlations ($p < .07$) and for sibling differences ($p < .08$), and reached significance for the percentages showing the easy-difficult split. These percentages were 50.0 for same-sex and 27.8 for opposite-sex pairs, $\chi^2(1) = 3.19, p < .05$, one-tail test. Because only two sets of pairs were available to
test a paradoxical effect that succeeds in reaching significance in about one out of four analyses and because subgroups of this size have reasonable statistical power to detect only rather large differences in correlation, the significantly greater percentage deidentification for same-sex pairs and the near significantly greater negative correlation can be viewed as providing support, although limited, for the prediction. Also supportive of the prediction is that the \(-.42\) correlation for inner-city same-sex siblings was significantly negative, whereas that for opposite-sex siblings was near zero (see Table 1), and that only the correlation for same-sex siblings differs significantly from the low positive correlations for sibling personality previously reported (Rowe & Plomin, 1981; Scarr & Grajek, 1982).

It should be noted that differences between same- and opposite-sex pairs do not account for the primary finding that deidentification occurs mainly in groups of first-second pairs, because same-sex siblings were not significantly more common within these groups. Additionally, within-pair analyses were undertaken to study the effect of spacing and the age of the younger child in a pair on sibling deidentification. For the correlation index, partialing out the effects of these variables had no significant effect for any of the groups of pairs. For the sibling-difference index, correlations with spacing were not significant for any of the eight groups of pairs. Of the eight correlations between these sibling differences and the age of the younger child in a pair, one reached significance, \(-.24\) for middle-class two-child-family pairs, but the direction of the effect conflicts with a previous finding on generalized deidentification in a somewhat older sample (Schachter et al., 1978), so that results are not interpretable until additional samples can be drawn. In any case, recall that for purposes of comparisons among pairs, two- and three-child families were matched according to the age of the younger child.

Other findings.—The effect of birth order, age, and sex-of-child on each child's ratings was also studied. None of these variables showed significant effects for more than one of the four subsamples of the inner-city and middle-class two-child and three-child families. The effect of social class on each child's ratings was also examined, since Mac Phee (1983) found that middle-class mothers tended to rate their children as less difficult. Present means, 2.89 for middle-class mothers and 3.28 for inner-city mothers, were not found to differ significantly. No doubt between-family designs, that is, studying one child from each family, are more appropriate for assessing the effects of those variables, such as social class, that are largely shared by all the children in a family.

Discussion

The pattern of occurrence of mothers' temperament ratings of their children as easy, difficult, or half-and-half is sufficiently similar to that previously obtained for generalized sibling deidentification to plausibly infer that the within-family environmental process of sibling deidentification may play an active role in mothers' defining of their children as difficult in temperament. On the other hand, environmental mismatch given an inherently difficult child is another likely source. How then to distinguish between these two possible types?

It is clear that sibling deidentification can be ruled out when the difficult child is a singleton or when both members of a sibling pair are rated as difficult. The data on three-child families also suggest that, when children other than the first two in a family are defined as difficult, deidentification is not likely to be the source. On the other hand, when the first two children in the family are defined as contrasting on the easy-difficult dimension, the possibility that the difficult child has been so defined on the basis of the tendency to view siblings as contrasting should be seriously considered. Secondarily, there may be grounds for suspecting more deidentification in the case of same-sex than in that of opposite-sex siblings, since whenever significant disparities in generalized deidentification have been found in the past (in one out of four pair analyses, Schachter, 1982), deidentification has favored the former; although the present sample size provided limited opportunity to demonstrate this paradoxical greater contrast for same-sex siblings, the results obtained are consistent with past results.

The results also show that deidentification is not merely a middle-class phenomenon. Inner-city mothers with two children showed the predicted sibling contrast and provided some evidence of greater contrast for same-sex pairs. That inner-city three-child-family first-second pairs did not show significant contrast, unlike all the other groups of first-second pairs, is probably due to a phenomenon that occurred only in this subsample. Inner-city mothers with three children tended to rate all their children as being in the same category, often lumping them to-
gethcr in one response, "They are all easy," or "They are all half-and-half." (None said that they were all difficult.) This tendency occurred in 29% of this sample, a percentage significantly greater than would be expected on the basis of chance (11.1% would be so expected, given the 10 possible combinations, for the trichotomy, \(\chi^2[1] = 10.08, p < .01 \)). The lack of individuality in these responses, possibly a reaction to the burden of coping with a large family under difficult circumstances (or to feeling uneasy with middle-class researchers), could mask sibling deidentification in any one of the pairs. It probably also accounts for the high positive correlation for the group of first-third pairs of this sample compared to that for the corresponding middle-class group. Further research, with procedures modified to encourage reflecting on each child's individuality, seems indicated.

Turning to more general issues, we must consider whether mothers define their children as different in temperament because they really are different, owing to genetic disparity or to some environmental process other than sibling deidentification? No doubt some mothers see their children as different because they really are genetically different. But genetics cannot explain previous or present findings on sibling deidentification, at least as the negative correlation for the group of first-third pairs might have been even higher than it were. Rowe and Plomin (1981) and Scarr and Grajek (1982) may have opened a treasure chest when they directed our attention to the environment within the family. We may find many surprises therein to invigorate a developmental psychology heretofore overly focused on between-family environmental processes.

This brings us to the issue of perceived versus real difficulty. When developmentalists use the term "real" or "observable" behavior, they usually adopt a between-family frame of reference, comparing one child in a family to a distribution of children in other families. It is quite possible, however, for one sibling to be rated as the difficult child in the family and another as the easier one, with both children scoring well below the mean difficulty for children in other families. It is also possible for the mother's negative perception of the child to generate a vicious cycle of negative behavior, fortifying the mother's perception and, in turn, exacerbating the negative behavior until the child designated as difficult by the mother eventually falls above the mean difficulty across families. Further, siblings can even reverse roles while deidentification itself persists, so that the more difficult child becomes the easier one and vice versa. (See, e.g., Chess & Thomas's, 1983, case, p. 161, where Olga becomes the more difficult child when
“difficult” Nancy shows some special talents that endear her to her parents.) Given these vicissitudes, it would not be surprising if, at any given moment, a mother’s perceptions bore no relationship to reality either inside or outside the family.

Nevertheless, it can still be argued, in this post-Skinnerian era of cognitive behaviorism and attribution analysis, that the mother’s definition of the child, especially to the extent that it is likely to become a part of his or her own self-definition, has important consequences for subsequent development. For example, family therapists (Guinman & Kiskern, 1981) routinely question the reality of the within-family definition of “patient,” using instead the term “designated patient,” that is, the one defined as such by family members. Yet it is this within-family definition, whether it has any basis in reality or not, that defines the person as deviant, a low-status social role with unfortunate consequences for development.

On this basis, the present findings suggesting that within-family environmental processes may play a role in mothers’ defining their children as difficult, should give us reason to pause before urging parents to resign themselves to having a child with a difficult nature and merely providing a good environmental match. Certainly, there are cases in which such advice is indicated. But when deidentification is suspected—that is, when the first two children in the family are defined as contrasting on the easy-difficult dimension—parents might well be advised to reconsider their definition of the child as difficult and be encouraged to redefine him/her as easy. Or perhaps better still would be a healthy balance of the two, neither too difficult, willful, and destructive—that is, Achenbach’s (1982) externalizing psychopathology—nor too easy, timid, and nonassertive—that is, Achenbach’s internalizing psychopathology.

References

Rowe, D. C., & Plomin, R. (1981). The importance

This document is a scanned copy of a printed document. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material.